
P. Thulasiraman et al. (Eds.): ISPA 2007 Workshops, LNCS 4743, pp. 153–162, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Transparent Protocol Scheme
Based on UPnP AV for Ubiquitous Home

Jiyun Park, Hyunju Lee, and Sangwook Kim

Dept. of Computer Science, Kyungpook National University, Korea
{jypark,hyunju,swkim}@woorisol.knu.ac.kr

Abstract. There are a variety of AV devices and multimedia content in the
ubiquitous home and the sharing of content needs to have high quality of
transfer by using optimized transport protocol for the each content. This paper
presents the design and implementation of our proposed scheme that is based on
UPnP AV framework which can support various transport protocol
transparently. We validated and evaluated our proposed scheme and
experimental results show that it can stream content effectively.

1 Introduction

These days, there are various multimedia services in the ubiquitous home as much as
the users of home network are increasing[1]. There are also many kinds of AV
devices in the ubiquitous home and these devices perform high quality services and
have various multimedia content. Today’s ubiquitous home provides technology to
share and use these services and content with AV devices, regardless of where the
contents are stored[2-3].

The Universal Plug and Play (UPnP) forum defined UPnP AV architecture as the
standard of the interoperability of the home network for sharing multimedia content
and controlling AV devices[4]. The UPnP AV architecture supports zero-
configuration networking and automatically discovers devices that dynamically join a
home network. It leverages TCP/IP and the Web to enable seamless proximity
networking so, it communicates via HTTP. However this means UPnP AV
architecture can not fully provide time-based multimedia services for audio and video
content because the best feature of HTTP is reliable and in-order delivery of data. We
propose enhanced UPnP AV architecture which can support various transport
protocols for multimedia content such as audio and video.

In this paper, we describe the design and implementation of UPnP AV System that
has transparent protocol scheme. This system can select transport protocol
transparently regardless of file type of content. We adopt the UPnP AV architecture
for interoperability of multimedia networking among home network devices and
HTTP and RTSP for transport protocol of the multimedia content. By implementing
the UPnP AV architecture with proposed module, our system provides not only the
real-time streaming from the media server to the media renderer but also the
guarantee of QoS for transfer of audio and video.

154 J. Park, H. Lee, and S. Kim

The rest of this paper organized in the following way: it starts with overview of the
transparent protocol for audio and video on the application layer. Section 3 introduces
UPnP AV architecture and section 4 presents a system design and an implementation
of the proposed scheme. Section 5 will show the development and the evaluation of
our UPnP AV System. Finally section 6 concludes with future works.

2 Real-Time Streaming Protocol

UPnP architecture is based on TCP and UDP and it uses HTTP to communicate and
transfer data between devices. HTTP is a suitable protocol for data-sharing or
communication but it is not suitable protocol for multimedia content such as audio
and video. This section gives the knowledge about Real-time Streaming Protocol
(RTSP) and the relationship with HTTP.

RTSP is a client-server application protocol for controlling the delivery of data
with real-time properties[5]. It is developed by the IETF and published in 1998 as
RFC 2326 and is used in streaming media systems for audio and video which allow
client to control remotely a streaming media server, issuing VCR-line commands and
allowing time-based access to files on a server[6]. RTSP uses UDP as default but it
can also use TCP to deliver data if necessary. It uses TCP for player control messages
and UDP for audio and video data.

RTSP is similar to HTTP in syntax and operation but it differs from HTTP in using
protocol on the transport layer. HTTP is entirely based on TCP for web pages and
TCP guarantees reliable and in-order delivery of data from sender to receiver. HTTP
has rudimentary mechanisms for random access to files therefore it is not suitable for
time-based seeking.

While HTTP is a stateless protocol, RTSP is a stateful. RTSP is designed to work
with time-based media over UDP. UDP does not guarantee reliability and ordering
that TCP does. UDP also does not have overhead of checking whether every packet
arrived, it is faster and more efficient for time-sensitive purposes. RTSP has
mechanisms for time-based seeks into media clips, with compatibility with many
timestamp formats. In addition, RTSP is designed to control multicast deliver of
stream and therefore, it could be a framework for multicast-unicast hybrid solutions
for heterogeneous network like the Internet. The differences between two protocols
result from their under layer protocols which are TCP and UDP.

3 UPnP AV Architecture

UPnP is a middleware solution proposed by Microsoft. The purpose is control and
operating among network devices in home using IP network and HTTP. A device can
dynamically join a network, obtain IP address, convey its capabilities, and learn about
the presence and capabilities of other devices. Furthermore UPnP enabled device can
control remote devices and transfer data to and from remote devices. In addition,
device can leave a network smoothly and automatically without leaving any unwanted
state behind.

 A Transparent Protocol Scheme Based on UPnP AV for Ubiquitous Home 155

UPnP AV framework defines three components that are Media Server, Media
Renderer and Control Point, as depicted in Figure 1. Media Server functionality
provides access to multimedia content and transfers them to other devices that are
located in the network. It has Contents Directory, Connection Manager and AV
Transport services. Media Renderer allows playback of a variety of rich media
formats on devices. It has Rendering Control, Connection Manager and AV Transport
services. Control Point allows user to discover and control devices in the network and
multimedia content to flow between devices.

Fig. 1. UPnP AV Architecture

UPnP uses FIFO to transfer the messages among the components of UPnP AV
framework. Control Point sends the requests of users to Media Server and Media
Renderer and receives the event messages from them. And then Media Server streams
multimedia content via HTTP to Media Renderer. Media Renderer requests the
streaming to Media Server to playback multimedia content that is streaming from
URL of contents that are known by Control Point. Media Server and Media Renderer
send events which occur from each component to Control Point, and then users get
information of multimedia content or messages from Control Point.

4 A Transparent Protocol Scheme

The main objectives of our implementation work are the validation of our proposed
scheme and streaming contents between the media server and the media renderer via
various transport protocols. This section describes the design, implementation and
evaluation of our proposed scheme.

156 J. Park, H. Lee, and S. Kim

4.1 Our Proposed System Architecture

In the general AV system, which is based on UPnP AV framework, streams content
only using HTTP-GET method. Standard UPnP AV framework defined by UPnP
forum also communicates via HTTP. But it is not suitable transport protocol for time-
based data such as audio and video that are used frequently in the home. For example,
HTTP can not stream some kind of content such as mp4.

To overcome this problem, we proposed transparent protocol scheme and added
Protocol Selection Module in the control point of our system. This module can
support various transport protocols that are suitable for each content format. The
architecture with Protocol Selection Module is shown in Figure 2. It consists of three
components-Media Server, Media Renderer and Control Point and we integrated
Media Renderer and Control Point into single GUI. The highlight of our system is the
Protocol Selection Module that allows content to stream via the most suitable
transport protocol for file type.

Fig. 2. Architecture of our UPnP AV System

Figure 3 helps to understand relationship between content and available transport
protocols in the media servers. Media Server 1 has Content A and Content B, and
Contents A can use Protocol a or Protocol b for streaming to the media renderer. Thus
if Content A want to stream, then Protocol Selection Module selects transport
protocol between available ones (Protocol a, Protocol b) considering the best suited
for data transport.

Protocol a
Content A

Protocol b
Protocol a
Protocol c

Media Server 1
Content B

Protocol d
Content C Protocol b

Media Server 2
Content D Protocol a

Fig. 3. Composition of content in the media server

 A Transparent Protocol Scheme Based on UPnP AV for Ubiquitous Home 157

Figure 4 is a flow diagram which shows how to work Protocol Selection Module
according to transparent protocol scheme. At first, the control point discovers the
media servers and the media renderers in the home network using UPnP standard
functions (GetDivice(), GetDirectory(), GetContents().etc.). And then, the media
servers and the media renderers reply to the control point with their information,
which is the descriptions is written in XML, such as content directories and the
specification of renderers (device type, supporting content formats. etc.). Protocol
Selection Module in the control point prepares to stream the content via selecting the
transport protocol which is suitable for content format and can be supported by
renderering module. This module is out of the UPnP AV framework and it makes
UPnP AV system serves adaptive AV service. The media renderer requests the
content to the media server using URI which received from the control point. Finally
the media server starts to stream the content to the media renderer via transport
protocol which is selected by Protocol Selection Module.

Step 1, 2 perform when each UPnP device connects or disconnects into home
network and step 3, 4, 5 perform at each service request. If the media renderer can not
support the content format, the AV service is denied at step 3. If content can not use
optimized transport protocol to stream, then it uses default protocol at step 5.

Streaming Server
(Media Server)

Protocol selection Module
(Control Point)

Renderer Module
(Media Renderer)

Protocol Selection Module

1. GetDevice(), GetDirectory(),
GetContent()

3. URI of selective content

4. Request streaming content

5. Streamimg content

Information
of Contents

Information
of Rnderers

2. GetDevice()

Fig. 4. Flow diagram of Protocol Selection Module

4.2 Operation of the Transparent Protocol Scheme

Our UPnP AV System consists of the media server, the media renderer and the
control point like UPnP AV architecture does. We are implemented system except the
media server so we used Intel AV Media Server. The media renderer used MPlayer
for audio and video and ImageViewer for image as the player modules[7]. And our
UPnP AV System used Freevo GUI module for the control point that is written in

158 J. Park, H. Lee, and S. Kim

python. All modules of our system were relied on the UPnP API provided by the open
source UPnP SDK for Linux and were formed of the C libraries.

Implementing Protocol Selection Module is key point of this paper. It extracts URI
of the multimedia content from parsed DIDL (Digital Item Declaration Language)
description. In most cases, only URI is enough to decide its transport protocol. But for
reliability, our system further checks the file type of content. After the phase of
checking it, Protocol Selection Module gives the URI of content to the media
renderer, and then the media renderer requests media server to stream content via
selective protocol. The following piece of XML code is the description of multimedia
content.

<xsd:element name="CurrentURI">
<xsd:complexType>

 <xsd:simpleContent>
 <xsd:extension base="upnp:string">
 <xsd:anyAttribute namespace="##other"

processContents="lax"/>
 </xsd:extension>
 </xsd:simpleContent>

</xsd:complexType>
</xsd:element>

5 Development

This section presents development of our enhanced UPnP AV System that has our
proposed scheme, which can select transport protocol transparently. And we evaluate
our system in comparison with the standard UPnP AV architecture.

5.1 System Development Based on UPnP AV Architecture

We validated the possibility of RTSP in the UPnP AV framework on our previous
version[8]. Protocol Section Module in the new version can select transport protocol
between HTTP and RTSP among a variety of transport protocols, because these two
are the typical transport protocols in the application layer for the AV services in the
home network.

RTSP is not supported by standard UPnP SDK, on the other side HTTP is. To
support this on MPlayer, our system adopted live555 Library. There are some reasons
for choosing of this library. First, it can be complied for various OS (UNIX, Window,
QNX) can be used to build streaming applications[9]. The live555 Library can be
used to stream, receive and process MPEG, H.263 or JPEG video, and several audio
codec. Another reason is that it can be easily extended to support additional codec,
and can also be used to build basic RTSP client and servers. And this library has been
used to add streaming support to existing media player applications, such as MPlayer.
This is the main reason that we adapted.

 A Transparent Protocol Scheme Based on UPnP AV for Ubiquitous Home 159

Figure 5 illustrates the demonstration. We ran Intel AV Media server on PC
running Window and our UPnP AV System on PC running Linux. As shown, the user
can choose content on the friendly GUI of the control point that integrated media
renderer, as mentioned. The content are classified into categories that are stored in the
media server. As the content plays, it is immediately delivered to the player module
for rendering.

GUI
for Control Point

Intel Media Server
for Media Server

MPlayer
for Media Renderer

Fig. 5. Scenes of demonstration

5.2 System Evaluation

In this section, we present the evaluation of transparent protocol scheme that can
choose transport protocol by file type of contents and support various file types.

5.2.1 Validation of Scheme

Our implementation of the proposed scheme was tested against a number of
functional trials. For test, we set up two PCs hosting the media server and the media
renderer. The media renderer was integrated into the control point that has our
Protocol Selection Module.

Figure 6 shows the URI of content that is stored in the media server which is
detected by the control point. Figure 6(a) shows the URI list which is detected by
standard UPnP AV architecture, Figure 6(b) shows it which is detected by our
implementation system. As figures demonstrate, even if content is the same, the URI
is not. Because our Protocol Selection Module select the most suitable transport
protocol for content and makes URI of content. In result, the media server sends it to
the control point and then the media renderer receives the content using that URI.

160 J. Park, H. Lee, and S. Kim

(a) URI of standard UPnP AV System

(b) URI of our UPnP AV System

Fig. 6. URI of content

5.2.2 Analysis

Data communication between AV devices in the home network should be done and
controlled via UPnP protocol on the IP layer. On this condition, HTTP works well via
TCP and RTSP works well via UDP generally. We measured packet rates and byte
rates on our UPnP AV System and standard UPnP AV architecture with mp4 video
data using Ethereal[10]. The size of video data is 2.33M and we play it for 60sec.

Figure 7(a) shows the packet flow on standard UPnP AV System and Figure 7(b)
does ours. The horizontal line is time and the vertical line is number of packets. The
following table summaries this experiment, our UPnP AV System that used RTSP
achieves more packet rate and bit rate comparison with standard UPnP AV

Table 1. Comparison between systems

 Ours Standard

Avg. packets/sec 56.017 43.353

Avg. bytes/sec 35574 34249

Avg. MBit/sec 0.285 0.274

 A Transparent Protocol Scheme Based on UPnP AV for Ubiquitous Home 161

(a) Packet flow on standard UPnP AV System

(b) Packet flow on our UPnP AV System

Fig. 7. Comparison of packet flow

architecture. This experiment validated RTSP is likely that the alternative application
layer protocol for home network will support real-time streaming.

6 Conclusions

Transparent protocol scheme has been proposed in this paper. Based on UPnP AV
architecture, this scheme enables a transport protocol selection service transparently
and it provides a suitable protocol for the each content. This scheme that is described
in this paper has already implemented. Our UPnP AV System is implemented on
Linux, so it can be easily embedded in most AV devices. In other word, this system
can be used widely in ubiquitous home network.

The implementation of the enhanced UPnP AV System for mobile devices is
ongoing. Control Point for PDA is already implemented. So, a short-term perspective
is to apply our framework to the various mobile devices. This makes real universal
play in ubiquitous environment.

Acknowledgements

This research was supported by the MIC of Korea, under the ITRC support program
supervised by the IITA(IITA-2006-C1090-0603-0026).

162 J. Park, H. Lee, and S. Kim

References

1. Jun, G.: Home Media Center and Media Clients for Multi-room Audio and Video
Applications. In: Proceeding of Consumer Communications and Networking Conference,
Las Vegas, pp. 257–260 (2005)

2. Giovanelli, F., Bigini, G., Solighetto, M.: A UPnP-based bandwidth reservation scheme
for In-Home Digital Networks. In: Proceeding of International Conference on
Telecommunications 2, 1059–1064 (2003)

3. Choi, S., Kang, D., Lee, J.: An UPnP based Media Distribution System supporting QoS in
a Converged Home Network. Proceeding of Network Operations and Management
Symposium, Vancouver, 1-4 (2006)

4. UPnP Forum.: http://www.upnp.org
5. RTSP.: http://www.rtsp.org
6. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing Object Encodings. In: Abadi, M., Ito,

T. (eds.) RFC 2326, http://www.ietf.org/rfc/rfc2326.txt7
7. Mplayer.: http://www.mplayerhq.hu
8. Park, J., Lee, H., Kim, S., Kim, S.: UPnP AV framework for Real-time AV Streaming. In:

The 6th International Conference on Applications and Principles of Information Science,
Kuala Lumpur, pp. 174–177 (2007)

9. Live 555 Library.: http://live555.com/mplayer
10. Ethereal.: http://www.ethereal.com/

	A Transparent Protocol Scheme Based on UPnP AV for Ubiquitous Home
	Introduction
	Real-Time Streaming Protocol
	UPnP AV Architecture
	A Transparent Protocol Scheme
	Our Proposed System Architecture
	Operation of the Transparent Protocol Scheme

	Development
	System Development Based on UPnP AV Architecture
	System Evaluation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

